Learning from Imprecise Data: Possibilistic Graphical Models

نویسندگان

  • Christian Borgelt
  • Rudolf Kruse
چکیده

Graphical models—especially probabilistic networks like Bayes networks and Markov networks—are very popular to make reasoning in highdimensional domains feasible. Since constructing them manually can be tedious and time consuming, a large part of recent research has been devoted to learning them from data. However, if the dataset to learn from contains imprecise information in the form of sets of alternatives instead of precise values, this learning task can pose unpleasant problems. In this paper we study an approach to cope with these problems, which is not based on probability theory as the more common approaches like, e.g., expectation maximization, but uses possibility theory as the underlying calculus of a graphical model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning possibilistic graphical models from data

Graphical models—especially probabilistic networks like Bayes networks and Markov networks—are very popular to make reasoning in high-dimensional domains feasible. Since constructing them manually can be tedious and time consuming, a large part of recent research has been devoted to learning them from data. However, if the dataset to learn from contains imprecise information in the form of sets...

متن کامل

Learning possibilistic networks from data: a survey

Possibilistic networks are important tools for modelling and reasoning, especially in the presence of imprecise and/or uncertain information. These graphical models have been successfully used in several real applications. Since their construction by experts is complex and time consuming, several researchers have tried to learn them from data. In this paper, we try to present and discuss releva...

متن کامل

Possibilistic Graphical Models

Graphical modeling is an important method to efficiently represent and analyze uncertain information in knowledge-based systems. Its most prominent representatives are Bayesian networks and Markov networks for probabilistic reasoning, which have been well-known for over ten years now. However, they suffer from certain deficiencies, if imprecise information has to be taken into account. Therefor...

متن کامل

Possibilistic Networks: Data Mining Applications

The explosion of data stored in commercial or administrational databases calls for intelligent techniques to discover the patterns hidden in them and thus to exploit all available information. Therefore a new line of research has recently been established, which became known under the names “Data Mining” and “Knowledge Discovery in Databases”. In this paper we study a popular technique from its...

متن کامل

F 1 . 2 Inference Methods

This section investigates graphical modeling as a powerful framework for drawing inferences under imprecision and uncertainty. We survey the semantical background and relevant properties of relational, probabilistic, and possibilistic networks and consider evidence propagation in such networks as well as methods for learning them from data. Whereas the probabilistic Bayesian networks and Markov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002